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1 Question

Consider the following formulation of the SVM objective function:

J(w) =
n∑

i=1

`(wTxi, yi) + λ‖w‖2,

for λ > 0 and where the loss function is the hinge loss `(ŷ, y) = (1− ŷyi)+,
where (x)+ = x1 [x ≥ 0] refers to the “positive part” of x. This differs from our
usual objective J ′(w) = 1

2
||w||2 + c

n

∑n
i=1 `(w

Txi, yi), but the two will produce
the same set of solutions as we vary the hyperparameters λ, c ∈ (0,∞).

We know from the duality theory of SVMs that the minimizer of J(w) can be
written as

w∗ =
n∑

i=1

α∗i yixi,

where some subset of the α∗i ’s may be exactly 0. For prediction, we don’t need to
save the (xi, yi) points for which α∗i = 0. One natural question is, what happens
if we remove these points from the training set and re-fit the model? Perhaps the
solution doesn’t change at all?

2 Answer to an easier question

We can’t show that dropping all points with α∗i = 0 from the training set won’t
change the answer. But here we show something a bit weaker: if we drop all
training points that are on the “good side of the margin”, then the solution does
not change. In other words, we can drop all training points for which yixTi w

∗ > 1
and still end up with the same trained model. The set of training examples for
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which yixTi w
∗ > 1 all have α∗i = 0, but there may be some points with α∗i = 0 for

which yixTi w
∗ = 1, and so wouldn’t be excluded. Here’s the proof of our claim:

Without loss of generality, index the xi’s so that xm+1, . . . , xn are all the
points on the “good side of the margin” (i.e. yixTi w

∗ > 1). Then we know that
α∗m+1, . . . , α

∗
n = 0. Let’s define

J1(w) =
m∑
i=1

`(wTxi, yi) + λ‖w‖2

and let

J2(w) =
n∑

m+1

`(wTxi, yi).

Note that J(w) = J1(w) + J2(w). The claim is that if w∗ is the minimizer of
J(w), then it is also the minimizer of J1(w). We’ll do this with a local analysis of
J and J1 around w∗. The relation yixTi w

∗ > 1 holds for each i = m + 1, . . . , n.
Moreover, since yixTi w is a continuous function of w for each i, there is some ε-
ball around w∗ for which yixTi w > 0 for all i and for all w in the ball. Thus in that
ball, i.e. for all {w | ‖w − w∗‖ < ε}, we have `(wTxi, yi) =

(
1− yiwTxi

)
+
= 0,

and so J2(w) ≡ 0 . Thus in that ball, J1(w) = J(w). Sincew∗ is a local minimizer
of J(w) in the ball, it is also a local minimizer of J1(w). By convexity of J1(w),
w∗ is a global minimizer of J1, and so the solution is unchanged by dropping the
training points on the good side of the margin.

3 Challenge

What happens if exclude all points with α∗i = 0? Either show that we may end up
with a different solution w∗ or show that the solution is unchanged.
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