
Thompson Sampling for Bernoulli
Bandits

David S. Rosenberg

1 Basic Idea

Suppose we have K bandits (i.e. slot machines). Our game proceeds in rounds,
and in each round we can select one of theK bandits to play. In the Bernoulli ban-
dit setting, every time bandit k is played, it pays off a reward of 1 with probability
θk and 0 with probability 1− θk.

If we knew θ1, . . . , θK ∈ [0, 1], the optimal action would be to always play
bandit kbest = argmaxk θk. However, we start with no information, so we must
trade off between trying various bandits to estimate their probability of payoff (ex-
ploring) with committing to the bandit that seems best so far (exploiting). There
are various approaches to this tradeoff.

2 Thompson Sampling

Thompson sampling is a Bayesian approach to this problem. We start with a
prior distribution on each of the K bandits: π(θ1), . . . , π(θK). In this setting, it’s
easiest to use a prior from the Beta family of probability distributions, since that’s
a conjugate prior.

Let Dt be all the data we have collected after t rounds of play, which we can
represent as a set of pairs ((n10, n11), (n20, n21), . . . , nK0, nK1)) , where nk1 is the
number of times bandit k was played with a payoff of 1 and nk0 is the number of
times bandit k was played with a payoff of 0. So if we look at the data at round t,
we’ll have

∑K
k=1 (nk1 + nk0) = t.

Suppose we’ve just completed round t and we have dataDt. We can then com-
pute the posterior distributions on the unknown parameters: π(θ1 | Dt), . . . , π(θK |
Dt).
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2 2 Thompson Sampling

Which bandit should we play at the t + 1’st round? The greedy approach
would be to play the bandit that has the highest probability of being the best. This
is all exploitation, and no exploration. The Thompson sampling approach is an
interesting compromise: For each k, sample θ̂k ∼ π(θk | Dt). Then play bandit
k = argmaxk θ̂k. Then k is a sample from the posterior distribution over which
bandit is the best. As we become more confident about which is the best bandit,
we’ll choose that bandit more frequently. All that’s left is to work out the details
for computing the posterior distributions.

2.1 Details for using the Beta prior

We’ll use the following parameterization of the Beta family of distributions:

θ ∼ Beta(α, β)
π(θ) ∝ θα−1 (1− θ)β−1 ,

for α, β > 0, and where the support of the distribution is (0, 1). Some probability
densities are shown in the Figure1 below:

2.1.1 Posterior Prior / Posterior

For the case of a single bandit, let’s let θ be the probability of a payoff of 1, and
let n1 be the number of 1’s we’ve observed so far, and n0 be the number of 0’s

1 Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wiki-
media Commons.

http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg
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observed so far. The likelihood function for θ for this data is then p(n0, n1 | θ) =
θn1 (1− θ)n0 . If our prior on θ is Beta(α0, α1), then the posterior after observing
data D = (n0, n1) is given by

p(θ | D) ∝ p(θ)p(D | θ)
∝ θα1−1 (1− θ)α0−1 × θn1 (1− θ)n0

= θα1−1+n1 (1− θ)α0−1+n0 .

Thus the posterior distribution on θ is θ | D ∼ Beta(α0 + n0, α1 + n1).
For K bandits, we just compute the posteriors separately for each θk in the ob-

vious way. So if ((n11, n10), (n21, n20), . . . , nK1, nK0)) is our dataDt after the t’th
round, and if we use the priors θk ∼ Beta (αk0, αk1) then the posterior distribution
for bandit k is

θk | Dt ∼ Beta(αk0 + nk0, αk1 + nk1).
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