
DS-GA 3001: Tools and Techniques for
Machine Learning (Spring 2021)

Instructor: David S. Rosenberg

Course description

This course deals with a range of topics that come up when applying machine
learning in practice. Roughly half the course will cover topics connected to
machine learning with interventions, such as counterfactual learning, reinforce-
ment learning, and causal inference. Inverse propensity methods for handling
biased samples and control variate methods for reducing variance will be given
special attention, as these form a common thread of techniques relevant to each
of these topics. We will also cover calibrating probability forecasts, interpreting
machine learning models, active learning, crowdsourcing and “data program-
ming”, as time permits.

Prerequisites

• DS-GA 1003: Machine Learning or equivalent.

• DS-GA 1002: Probability and Statistics or equivalent.

• Comfort with conditional expectations, conditional probability modeling,
basic Bayesian statistics, hypothesis testing and confidence intervals.

• Python programming required for most homework assignments.

Schedule

DISCLAIMER: We will cover the majority of the topics below, but the or-
ganization and specific topics may change. In particular, the topics of the first
8 weeks can be quite challenging, and if we need to take more time with them,
we may drop some of the topics at the end of the syllabus.

• Week 0: Conditional expectation and variance decomposition

• Week 1: Estimating a population mean with a biased sample

• Week 2: Machine learning for causal inference

• Week 3: Exploration vs exploitation for bandits
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https://davidrosenberg.github.io/ml2018/
https://cims.nyu.edu/~cfgranda/pages/DSGA1002_fall17/index.html
https://davidrosenberg.github.io/mlcourse/Notes/conditional-expectations.pdf
https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/06a.conditional-probability-models.pdf
https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/08a.bayesian-methods.pdf
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• Week 4: Counterfactual policy evaluation

• Week 5: Counterfactual learning

• Week 6: Introduction to reinforcement learning

• Week 7: Catch-up and review

• Week 8: Calibrated probability predictions

• Week 9: Methods for global feature importance

• Week 10: Explaining black-box model predictions

• Week 11: Crowdsourcing

• Week 12: Active learning

• Week 13: Weak supervision and “Data Programming”

• Week 14: Catch-up, review, and conclusions

Course Requirements and Evaluation

• (50%) Homework: 4 – 5 homework assignments; mix of model building
and written mathematical exercises to reinforce the main concepts.

• (20%) Weekly Quizzes: Concept-check quizzes that reinforce the main
ideas from lectures and lab, which students may use any resources to
complete.

• (30%) Project: In groups of 2–4, reproduce the experiments from a pa-
per of relevance to the course and extend them in some way (e.g. an ad-
ditional dataset, a new evaluation process, comparing to another method,
etc.).

Topic Details

Estimating a population mean with a biased sample

There are certain challenging ideas and techniques that come up repeatedly in
the first part of our course (in causal inference, counterfactual learning, and
reinforcement learning). We will introduce them here in the simplest possible
setting: estimating the mean of a population with a biased sample.

• Imputation, inverse propensity, self-normalization, and [possibly] dou-
bly robust methods Seaman and Vansteelandt (2018); Kang and Schafer
(2007)

• Control variates for variance reduction (Owen, 2013, Sec 8.9)

https://statweb.stanford.edu/~owen/mc/Ch-var-basic.pdf
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Machine learning for causal inference

When machine learning is applied in practice, it is often used to guide interven-
tions in the world that we hope will improve some outcome measure. When we
start making interventions, one of the most basic questions we can ask is which
of two interventions (such as a treatment and a control) is better. In a basic
statistics class, we learn how to estimate the “average treatment effect” (ATE)
when individuals are assigned to a treatment or control group with equal prob-
ability. In this module, we discuss how to estimate the ATE when individuals
are assigned to interventions with probabilities that depend on covariates (i.e.
characteristics/features of the individuals). Of course, interventions may have
better or worse performance depending on characteristics of the individuals. We
will also discuss how to estimate these “conditional average treatment effects”.

• Estimating average treatment effects with inverse propensity weighting
and imputation

• Two trees algorithm for estimating conditional average treatment effects
(CATE) Athey and Imbens (2015a)

• X-learner algorithm for CATE estimation Künzel et al. (2019)

– (optional) Honest random forest Athey and Imbens (2015b)

– (optional) Bayesian Additive Regression Trees (BART) Chipman et al.
(2010)

Exploration vs exploitation for bandits

How can we balance “exploiting” interventions that worked well before (e.g.
suggesting comedy movies for a particular individual) with “exploring” new in-
tervention strategies (e.g. suggesting action movies) that may have better out-
comes? In this module, we explore approaches to this classic “explore/exploit”
problem. We will start with a focus on the simple “Bernoulli bandit” setting.
Then we will introduce the more general contextual bandit setting, and discuss
explore/exploit methods for that case as well.

• Gradient bandit algorithms (Sutton and Barto, 2018, Sec 2.8)

– Using a “baseline” for variance reduction (a control variate technique)

• Thompson sampling for bandits and contextual bandits Chapelle and Li
(2011); Russo et al. (2018)

Counterfactual policy evaluation

Suppose we believe that different interventions are preferable for different indi-
viduals, depending on their characteristics. Then we want to develop a “policy”
that determines the interventions we take as a function of the characteristics of

https://davidrosenberg.github.io/mlcourse/in-prep/thompson-sampling-bernoulli.pdf


4

the individual. Given two policies, the simplest way to compare their perfor-
mance is with an “A/B test”, which basically means deploying the two policies
and seeing how they do. However, there can be very high costs to deploying a
sub-optimal policy. Furthermore, there is a practical limit to how many poli-
cies we can test out and still get a reasonable estimate of the performance of
each. In this module, we discuss how we can estimate the performance of a
new policy without actually deploying it, using data that was already collected
with a different policy. This data, collected from a so-called “logging policy”, is
called “logged bandit feedback”. We will revisit our discussion of imputation,
inverse propensity, and doubly robust methods and apply them to the problem
of estimating the performance of a policy using logged bandit feedback.

• Extending the imputation, inverse propensity, and doubly robust methods
to counterfactual policy evaluation from logged bandit feedback Dudík
et al. (2011)

Counterfactual learning

In our module on counterfactual policy evaluation, we discussed some methods
for estimating the performance of a new policy using logged bandit feedback.
However, the uncertainty of these estimates can vary dramatically, depending
on how different the new policy is from the logging policy. In this module, we
discuss how to handle this uncertainty when it comes to learning an optimal
policy from logged bandit feedback.

• Learning from logged bandit feedback (POEM) Swaminathan and Joachims
(2015b,a)

• Propensity overfitting (self-normalized estimator) Swaminathan and Joachims
(2015c)

Introduction to reinforcement learning

So far we’ve considered learning and evaluating policies in the contextual ban-
dit setting, where we assume that the contexts we observe are i.i.d. In the
reinforcement learning setting, sequences of contexts are grouped together into
“episodes”, which will have sequential dependencies. In particular, the action
we take at one step in the episode may affect the next context we observe. In
this module, we study “policy gradient” approaches for learning policies in this
setting.

• Empirical risk minimization with black-box loss functions

• Policy gradient methods for reinforcement learning (Sutton and Barto,
2018, Ch 13)

– Using a “baseline” for variance reduction (a control variate technique)
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Calibrated probability predictions

For models that make probabilistic predictions, how can we ensure that they
are both “calibrated” (e.g. the “70%” outcomes actually occur 70% of the time)
and “sharp” (e.g. the probability predicted for the successful outcome of a
surgery isn’t just the overall success rate, but varies depending on as many
characteristics of the individual as we can). It turns out, even assessing whether
a model is calibrated is nontrivial. In this module, we discuss some classic and
modern approaches to calibration and to assessing calibration.

• Assessing probabilistic predictions: `p calibration error, Brier score, and
likelihood

• Basic calibration methods: histogram binning and Platt scaling Platt
(1999)

• Bias/variance tradeoffs in assessing calibration

• The scaling-binning calibrator Kumar et al. (2019)

Feature importance

There are many methods that purport to measure the relative importance of
various features in a model. As one digs in, one finds that there are about as
many different methods for defining what is meant by feature importance. In
this module, we discuss the many intepretations of “feature importance”. We
also present some of the most popular approaches to feature importance, along
with a discussion of how they can be misinterpreted.

• Permutation feature importance Breiman (2001)

• Partial Dependency Plots (PDP) Friedman (2001)

• Individual Conditional Expectation (ICE) Plots Goldstein et al. (2013)

• Issues with above methods Hooker and Mentch (2019)

Explaining black-box model predictions

The previous module was about the relative importance of features in a model,
as a whole. In this module, we discuss how to assess the contributions of each
features to a particularmodel prediction. We’ll discuss some recent approaches
to these “local” model interpretations, as well as some of their issues.

• Local Interpretable Model-agnostic Explanations (LIME) Ribeiro et al.
(2016)

• Shapley Additive Explanation (SHAP) Lundberg and Lee (2017); Lund-
berg et al. (2020)

• Debate about SHAP and similar interpretability methods Sundararajan
and Najmi (2019); Kumar et al. (2020); Alvarez-Melis and Jaakkola (2018)
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Crowdsourcing

For many problems in the real world, a major expense (time and money) in
building a machine learning model is in the collection of labeled data. In this
module and the following two modules we will address several aspects of this
problem. In this module, we discuss how we can use “crowd workers” (generally
non-expert, and with varying error rates) to generate reasonably reliable labels
for our data. In particular, how many crowd workers should we get to label
each example? How do we automatically resolve disagreements?

• Jointly estimating worker skill and ground truth with Dawid-Skene two-
coin model Dawid and Skene (1979); Raykar et al. (2010); Zhang et al.
(2016,?)

• Incorporating example difficulty Zhou et al. (2015)

• How many labels do we need per example? Khetan et al. (2017)

Active learning

Given a large pool of unlabeled examples and a finite budget for labeling these
examples, can we do better than randomly sampling unlabeled examples to be
labeled? This is the core question of the “active learning” problem. In this
module, we discuss some classic approaches to active learning, as well as some
refinements.

• Uncertainty Sampling Lewis and Catlett (1994)

• Query-by-committee Settles (2009)

• Selection with simpler proxy models Coleman et al. (2020)

• Evaluating active learning methods Yang and Loog (2016)

Weak supervision and “Data Programming”

Rather than labeling individual examples, we can consider getting experts to
write “rules” for generating labels. For example, a rule might be “If the radiolo-
gist’s report has the phrase ‘is cancerous’ then the corresponding image should
be labeled as ‘shows cancer’.” In this module we discuss how we might use these
imprecise rules to generate a useful training set of “weakly labeled” data.

• Human-generated rules as weak supervision (SNORKEL) Ratner et al.
(2016)

• Matrix factorization for multitask weak supervision Ratner et al. (2018)

Academic Integrity Policy:

The course conforms to NYU’s policy on academic integrity for students.

http://www.nyu.edu/about/policies-guidelines-compliance/policies-and-guidelines/academic-integrity-for-students-at-nyu.html
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Moses Statement

Academic accommodations are available for students with disabilities. The
Moses Center website is http://www.nyu.edu/csd. Please contact the Moses
Center for Students with Disabilities (212-998-4980 or mosescsd@nyu.edu) for
further information. Students who are requesting academic accommodations are
advised to reach out to the Moses Center as early as possible in the semester
for assistance.
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