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Coalitional game1

Suppose there is a game played by a team (or “coalition”) of players.
A coalition game is

a set N consisting of n “players” and
a function v : 2N → R, with v(∅) = 0, assigning a value to any subset of players.

Think of N as a team. Maybe they’re trying to solve a puzzle together...
Says how well a subset of the team would have done, cooperating on the puzzle.

Suppose the whole team plays and gets value v(N).
Show should that value be allocated to the individuals on the team?
Is there a fair way to do it that reflects the contributions of each individual?

1Based on Shapley value article in Wikipedia [Wik20] and [MP08].
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https://en.wikipedia.org/wiki/Shapley_value


• Where we’re headed here is that we’re going to apply this approach of “value allocation” to
“coalitions” of feature “working together” to produce the final output.

• Of course, it’s not really clear what it means to use a subset of features with a specific prediction
function f (x).

• Various approaches to this will give us different feature interpretations.



Solutions to coalition games

Let G(N) denote the set of all coalition games on set N.
i.e. a game for every possible v : 2N → R.

A solution to the allocation problem on the set G(N) is a map Φ : G(N)→ Rn

gives the allocation to each of n players for any game v ∈ G(N).

Next we’ll give a particular solution, the Shapley value solution.
Then we’ll give various properties that seem desirable for a solution.
Finally, we’ll state a theorem that says the Shapley value solution

is the unique solution satisfying these properties.
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The Shapley value solution

The Shapley value solution is Φ(v) = (φi (v))
n
i=1 where

φi (v) =
∑

S⊂(N−{i})

k|S|,n (v (S ∪ {i })− v(S)) ,

where ks,n = s!(n− s−1)!/n!.
In words, for any game v ∈ G(N), player i receives φi (v).

You can show that
∑n

i=1φi (v) = v(N).

Equivalently,

φi (v) =
1
n!

∑
R

[
v(PR

i ∪ {i })− v
(
PR
i

)]
,

where sum ranges over all n! permutations R of the players in N.
PR
i is the set of players in N that precede i in order R.
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• The second version can be explained by the “room parable” [MP08, p. 6]: Players enter a room
one at a time to form the team of n players. Each player receives the marginal contribution of
their presence (could be negative). If all orders of entering the room have the same probability,
then φi (v) is the expected value of how much player i receives.

• Yet another way to write the Shapley value is as

φi (v) =
1
n

n−1∑
s=0

∑
S⊂(N−{i}) and |S|=s

(
n−1
s

)−1

[v(S ∪ {i })− v(S)]

=
1
n

∑
s:size of coalition

∑
coalition excluding i of size s

marginal contribution of i to the coalition
number of coalitions of size s excluding i

.



Efficiency and symmetry properties

Efficiency: For any v ∈ G(N), ∑
i∈N

φi (v) = v(N).

Symmetry: For any v ∈ G(N), if players i and j are equivalent in the sense that

v(S ∪ {i }) = v(S ∪ {j})

for every subset S of players that excludes i and j , then

φi (v) = φj(v).

Also called “equal treatment of equals”.
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Linearity property

Linearity: For any v ,w ∈ G(N), we have

φi (v +w) = φi (v)+φi (w)

for every player i in N. Also, for any a ∈ R,

φi (av) = aφi (v)

for every player i in N.
(This will be useful for prediction functions that are linear combinations of other functions,
such as gradient boosted regression trees.)
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Null player property

A player i is null in v if v(S ∪ {i }) = v(S) for all coalitions S ⊂ N.
If player i is null in a game v , then φi (v) = 0.
(In the context of machine learning, for some reason they call this the Dummy property.)
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Shapley value theorem (Shapley, 1953)

Theorem

The Shapley value solution Φ(v) = (φi (v))
n
i=1 defined previously is the unique solution for

G(N) that satisfies the
efficiency, symmetry, linearity, and null properties.

Proof: See references.

David S. Rosenberg (NYU: CDS) Shapley Values April 28, 2021 10 / 31



Example: Shapley values for constant game

Suppose v(S)≡ c for any coalition S ⊂ N, except v(∅) = 0.
Then for any i , j ∈ N, S ⊂ (N− {i , j}), we have

v(S ∪ {i }) = v(S ∪ {j}) = c ,

which implies φ1(v) = · · ·= φn(v) by the symmetry property.
By the efficiency property, ∑

i∈N
φi (v) = v(N) = c .

Therefore, φ1(v) = · · ·= φn(v) = c/n.
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Example: game plus a constant

Suppose we have a game v(S) on N

with Shapley values φ1(v), . . . ,φn(v).

Suppose we shift the rewards, so v ′(S) := v(S)+ c .
What are the Shapely values for v ′(S)?
Let w(S)≡ c for S ⊂ N, except w(∅) = 0.
Then v ′(S) = v(S)+w(S) and by linearity,

φi (v
′) = φi (v +w) = φi (v)+φi (w) = φi (v)+

c

n
.

So if we shift by a constant, the shift is divided equally among the players.
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Shapley Values for Feature Importance
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Shapley values for features

Shapley values are about n-player games.
In particular, they are about set functions on a set of n elements.
How can we connect this to the feature importance in machine learning?
Easy part: each “player” is a feature.
Hard part: what’s the set function?
We have a prediction function,

but it doesn’t naturally apply to subsets of features.
What if we start earlier:

building a model with a subset of features
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Attribute R2 to features

An early application of Shapley values to machine learning [LC01].
Applied Shapley values to allocate the R2 performance measure to features

for linear regression, though we’ll present the obvious generalization.
Essentially the same approach was actually done much earlier,

without making the connection to Shapley values, e.g. [Kru87].
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Attribute model performance to features

Let R(f ) be some performance measure of a prediction function f .
Let A :D 7→ f represent a model training algorithm that

takes a training dataset D and
produces a prediction function f .

Let {1, . . . ,d} index the features available for a problem.
Let DS denote the dataset with just the features indexed by S ⊂ {1, . . . ,d}.
Define the set function v(S) := R(A(DS)) and v(∅) = 0.
For any subset of features, v(S) gives

the performance of the model trained on just that subset of features.
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Lipovetsky and Conklin (2001)

In [LC01],
performance measure was R2

model class was linear models.
They used only 7 features, and linear models train quickly,

so computation wasn’t an issue.

Generally speaking, need to train 2d models.
Not practical in most machine learning settings.
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Monte Carlo approach

The Shapley values in our scenario are

φi (v) =
1
d!

∑
R

[
v(PR

i ∪ {i })− v
(
PR
i

)]
,

where sum ranges over all n! permutations R of the players in N.
PR
i is the set of players in N that precede i in order R.

We can approximate this by averaging a random sample of M permutations.
This still requires training Md models, which may not be practical for large d .
This whole approach is only realistic when d is small and training and evaluation are fast.
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Connection to LOCO

This approach is most related to LOCO from an earlier module.
We’re not saying anything about a particular prediction function.
We’re saying something about the importance of each feature

in a particular dataset,
for a particular model training procedure
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Shapley values for prediction functions
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Interpreting a prediction function

Suppose we want to use Shapley values
to interpret a particular prediction function f (x).

It’s not obvious what it means to evaluate f using a subset of features.
This is not a standard operation in machine learning.
Let’s write xS for the features corresponding to S ⊂ {1, . . . ,d}.
Let’s write xC for the features corresponding to the complement {1, . . . ,d}−S .
So if f (x) = f (xS ,xC ), we need a definition for fS(xS).
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Two approaches to defining fS(xS)

Two approaches, as described by [CJLL20, JMB19].
Conditional expectation (or “observational conditional expectation”)

fS(xS) := E [f (xS ,XC ) | XS = xS ] .

Marginal expectation (or “interventional conditional expectation”)

fS(xS) := E[f (xS ,XC )]

= E [f (xS ,XC ) | do(XS = xS)] ,

where the do-operator is beyond our scope, but see [JMB19].
Conditional expectation keeps us evaluation f (xS ,xC ) on the data manifold.
Marginal expectation will potentially evaluate f (xS ,xC ) off the data manifold,

when we have dependencies between xS and xC .
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Estimating fS(xS)

We generally don’t know the joint distribution of X ,
so we can’t directly compute the expectations in fS(xS).

For the marginal expectation, we can use the same approach as for partial dependency:

f̂S(xS) =
1
n

n∑
i=1

f (xS ,xCi ),

where (xC1, . . . ,xCn) are the n instantiations of xC in a dataset D.
For consistency, we’ll also define f̂∅ =

1
n

∑n
i=1 f (xi ).

For conditional expectation, this estimation is much more challenging.
In general, seems to require training 2d regression models.
But we’ll give one approximation in the next module on SHAP.
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Shapley values for prediction function

Suppose we have an estimate f̂S(xS) for each S ⊂ {1, . . . ,d}.
Then we can define the set function for our “game” on {1, . . . ,d} as

v(S) := f̂S(xS)

v(∅) := 0.

Frequently it’s defined as

v(S) := f̂S(xS)− f̂∅

v(∅) := 0.

That way, Shapley values indicate how each feature
pulls the prediction away from the mean / “no information” prediction.
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Estimating Shapley values for prediction function

Let’s return to the permutation formulation of Shapley value:

φi (v) =
1
d!

∑
R

[
v(PR

i ∪ {i })− v
(
PR
i

)]
.

Let’s take v(S) = E[f (xS ,XC )].
The idea is do a Monte Carlo estimate of both the sum over R

as well as the expectation in v(S)
at the same time.

We’ll randomly sample a permutation R .
Then we’ll randomly sample an XC

(which depends on R and i to determine the relevant features).

Plugging this together, we’ll get an unbiased estimate φi (v).
The more samples, the better the estimate.
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Approximate Shapley value, Monte Carlo approach (I)

Given:
point x ,
feature index j ,
prediction function f (x),
dataset D with a sample of X ’s,

Draw a random instance Z from D

Draw a random permutation R of {1, . . . ,d}.

This presentation is based on [Mol19, Sec 5.9]
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Approximate Shapley value, Monte Carlo approach (II)

Order the features of x and z by R :

xR =
(
x(1), . . . ,x(j), . . . ,x(d)

)
ZR =

(
Z(1), . . . ,Z(j), . . . ,Z(d)

)
Construct new instances:

With feature j : X+j =
(
x(1), . . . ,x(j),Z(j+1), . . . ,Z(d)

)
Without feature j : X−j =

(
x(1), . . . ,x(j−1),Z(j), . . . ,Z(d)

)
Then [ŠK14]

ER,Z [f (X+j)− f (X−j)] = φi (v)

So we can get arbitrarily good estimates of φi (v) by averaging a large number of these
unbiased estimates.

This presentation is based on [Mol19, Sec 5.9]
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Resources

The most common citation for the proof of the Shapley value theorem is Shapley’s paper
[Sha53]. These slides provide a proof of the Shapley value theorem, and I think the first
few sections of [MP08] are easier to read than Shapley’s paper.
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