Shapley Values

David S. Rosenberg

NYU: CDS

April 28, 2021

Contents

Shapley Values

2 Shapley Values for Feature Importance

Shapley values for prediction functions

Shapley Values

Coalitional game¹

- Suppose there is a game played by a team (or "coalition") of players.
- A coalition game is
 - a set N consisting of n "players" and
 - a function $v: 2^N \to \mathbb{R}$, with $v(\emptyset) = 0$, assigning a value to any subset of players.
- Think of N as a team. Maybe they're trying to solve a puzzle together...
 - Says how well a subset of the team would have done, cooperating on the puzzle.
- Suppose the whole team plays and gets value v(N).
- Show should that value be allocated to the individuals on the team?
- Is there a fair way to do it that reflects the contributions of each individual?

¹Based on Shapley value article in Wikipedia [Wik20] and [MP08].

- Where we're headed here is that we're going to apply this approach of "value allocation" to "coalitions" of feature "working together" to produce the final output.
- Of course, it's not really clear what it means to use a subset of features with a specific prediction function f(x).
- Various approaches to this will give us different feature interpretations.

Solutions to coalition games

- Let $\mathcal{G}(N)$ denote the set of all coalition games on set N.
 - i.e. a game for every possible $v: 2^N \to \mathbb{R}$.
- A solution to the allocation problem on the set $\mathfrak{G}(N)$ is a map $\Phi: \mathfrak{G}(N) \to \mathbb{R}^n$
 - gives the allocation to each of *n* players for any game $v \in \mathcal{G}(N)$.
- Next we'll give a particular solution, the Shapley value solution.
- Then we'll give various properties that seem desirable for a solution.
- Finally, we'll state a theorem that says the Shapley value solution
 - is the unique solution satisfying these properties.

The Shapley value solution

• The Shapley value solution is $\Phi(v) = (\phi_i(v))_{i=1}^n$ where

$$\phi_i(\mathbf{v}) = \sum_{S \subset (N-\{i\})} k_{|S|,n} \left(\mathbf{v} \left(S \cup \{i\} \right) - \mathbf{v}(S) \right),$$

where $k_{s,n} = s! (n-s-1)!/n!$.

- In words, for any game $v \in \mathcal{G}(N)$, player *i* receives $\phi_i(v)$.
 - You can show that $\sum_{i=1}^{n} \phi_i(v) = v(N)$.

• Equivalently,

$$\phi_i(\mathbf{v}) = \frac{1}{n!} \sum_R \left[\mathbf{v}(P_i^R \cup \{i\}) - \mathbf{v}(P_i^R) \right],$$

- where sum ranges over all n! permutations R of the players in N.
- P_i^R is the set of players in N that precede i in order R.

- The second version can be explained by the "room parable" [MP08, p. 6]: Players enter a room one at a time to form the team of n players. Each player receives the marginal contribution of their presence (could be negative). If all orders of entering the room have the same probability, then φ_i(v) is the expected value of how much player i receives.
- Yet another way to write the Shapley value is as

$$\begin{split} \varphi_i(v) &= \frac{1}{n} \sum_{s=0}^{n-1} \sum_{S \subset (N-\{i\}) \text{ and } |S|=s} \binom{n-1}{s}^{-1} \left[v(S \cup \{i\}) - v(S) \right] \\ &= \frac{1}{n} \sum_{s:\text{size of coalition coalition excluding } i \text{ of size } s} \frac{\text{marginal contribution of } i \text{ to the coalition}}{\text{number of coalitions of size } s \text{ excluding } i} \end{split}$$

Efficiency and symmetry properties

• Efficiency: For any $v \in \mathfrak{G}(N)$,

$$\sum_{i\in N} \phi_i(\mathbf{v}) = \mathbf{v}(\mathbf{N}).$$

• Symmetry: For any $v \in \mathcal{G}(N)$, if players *i* and *j* are equivalent in the sense that

 $v(S \cup \{i\}) = v(S \cup \{j\})$

for every subset S of players that excludes i and j, then

 $\phi_i(\mathbf{v}) = \phi_j(\mathbf{v}).$

• Also called "equal treatment of equals".

Linearity property

• Linearity: For any $v, w \in \mathcal{G}(N)$, we have

$$\phi_i(v+w) = \phi_i(v) + \phi_i(w)$$

for every player *i* in *N*. Also, for any $a \in \mathbb{R}$,

$$\phi_i(av) = a\phi_i(v)$$

for every player i in N.

• (This will be useful for prediction functions that are linear combinations of other functions, such as gradient boosted regression trees.)

- A player *i* is **null** in *v* if $v(S \cup \{i\}) = v(S)$ for all coalitions $S \subset N$.
- If player *i* is null in a game *v*, then $\phi_i(v) = 0$.
- (In the context of machine learning, for some reason they call this the Dummy property.)

Shapley value theorem (Shapley, 1953)

Theorem

The Shapley value solution $\Phi(v) = (\phi_i(v))_{i=1}^n$ defined previously is the unique solution for $\mathcal{G}(N)$ that satisfies the

- efficiency, symmetry, linearity, and null properties.
- Proof: See references.

Example: Shapley values for constant game

- Suppose $v(S) \equiv c$ for any coalition $S \subset N$, except $v(\emptyset) = 0$.
- Then for any $i, j \in N$, $S \subset (N \{i, j\})$, we have

 $v(S \cup \{i\}) = v(S \cup \{j\}) = c,$

which implies $\phi_1(v) = \cdots = \phi_n(v)$ by the symmetry property.

• By the efficiency property,

$$\sum_{i\in N} \phi_i(\mathbf{v}) = \mathbf{v}(\mathbf{N}) = \mathbf{c}.$$

• Therefore, $\phi_1(v) = \cdots = \phi_n(v) = c/n$.

Example: game plus a constant

- Suppose we have a game v(S) on N
 - with Shapley values $\phi_1(v), \ldots, \phi_n(v)$.
- Suppose we shift the rewards, so v'(S) := v(S) + c.
- What are the Shapely values for v'(S)?
- Let $w(S) \equiv c$ for $S \subset N$, except $w(\emptyset) = 0$.
- Then v'(S) = v(S) + w(S) and by linearity,

$$\phi_i(\mathbf{v}') = \phi_i(\mathbf{v} + \mathbf{w}) = \phi_i(\mathbf{v}) + \phi_i(\mathbf{w}) = \phi_i(\mathbf{v}) + \frac{c}{n}.$$

• So if we shift by a constant, the shift is divided equally among the players.

Shapley Values for Feature Importance

Shapley values for features

- Shapley values are about *n*-player games.
- In particular, they are about set functions on a set of n elements.
- How can we connect this to the feature importance in machine learning?
- Easy part: each "player" is a feature.
- Hard part: what's the set function?
- We have a prediction function,
 - but it doesn't naturally apply to subsets of features.
- What if we start earlier:
 - building a model with a subset of features

Attribute R^2 to features

APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY Appl. Stochastic Models Bus. Ind., 2001; **17**:319–330 (DOI: 10.1002/asmb.446)

Analysis of regression in game theory approach

Stan Lipovetsky*,[†] and Michael Conklin

Custom Research Inc., 8401 Golden Valley Road, Minneapolis, MN 55427, U.S.A.

- An early application of Shapley values to machine learning [LC01].
- Applied Shapley values to allocate the R^2 performance measure to features
 - for linear regression, though we'll present the obvious generalization.
- Essentially the same approach was actually done much earlier,
 - without making the connection to Shapley values, e.g. [Kru87].

Attribute model performance to features

- Let R(f) be some performance measure of a prediction function f.
- Let $\mathcal{A}: \mathcal{D} \mapsto f$ represent a model training algorithm that
 - $\bullet\,$ takes a training dataset ${\mathcal D}\,$ and
 - produces a prediction function f.
- Let $\{1, \ldots, d\}$ index the features available for a problem.
- Let \mathcal{D}_S denote the dataset with just the features indexed by $S \subset \{1, \dots, d\}$.
- Define the set function $v(S) := R(\mathcal{A}(\mathcal{D}_S))$ and $v(\emptyset) = 0$.
- For any subset of features, v(S) gives
 - the performance of the model trained on just that subset of features.

Lipovetsky and Conklin (2001)

• In [LC01],

- performance measure was R^2
- model class was linear models.
- They used only 7 features, and linear models train quickly,
 - so computation wasn't an issue.
- Generally speaking, need to train 2^d models.
- Not practical in most machine learning settings.

Monte Carlo approach

• The Shapley values in our scenario are

$$\Phi_i(\mathbf{v}) = \frac{1}{d!} \sum_R \left[\mathbf{v}(P_i^R \cup \{i\}) - \mathbf{v}(P_i^R) \right],$$

- where sum ranges over all n! permutations R of the players in N.
- P_i^R is the set of players in N that precede *i* in order R.
- We can approximate this by averaging a random sample of *M* permutations.
- This still requires training Md models, which may not be practical for large d.
- This whole approach is only realistic when d is small and training and evaluation are fast.

- This approach is most related to LOCO from an earlier module.
- We're not saying anything about a particular prediction function.
- We're saying something about the importance of each feature
 - in a particular dataset,
 - for a particular model training procedure

Shapley values for prediction functions

Interpreting a prediction function

- Suppose we want to use Shapley values
 - to interpret a particular prediction function f(x).
- It's not obvious what it means to evaluate f using a subset of features.
- This is not a standard operation in machine learning.
- Let's write x_S for the features corresponding to $S \subset \{1, \ldots, d\}$.
- Let's write x_C for the features corresponding to the complement $\{1, \ldots, d\} S$.
- So if $f(x) = f(x_S, x_C)$, we need a definition for $f_S(x_S)$.

Two approaches to defining $f_S(x_S)$

- Two approaches, as described by [CJLL20, JMB19].
- Conditional expectation (or "observational conditional expectation")

$$f_S(x_S) := \mathbb{E}[f(x_S, X_C) | X_S = x_S].$$

• Marginal expectation (or "interventional conditional expectation")

$$f_{S}(x_{S}) := \mathbb{E}[f(x_{S}, X_{C})]$$

= $\mathbb{E}[f(x_{S}, X_{C}) | do(X_{S} = x_{S})],$

where the do-operator is beyond our scope, but see [JMB19].

- Conditional expectation keeps us evaluation $f(x_S, x_C)$ on the data manifold.
- Marginal expectation will potentially evaluate $f(x_S, x_C)$ off the data manifold,
 - when we have dependencies between x_S and x_C .

Estimating $f_S(x_S)$

- We generally don't know the joint distribution of X,
 - so we can't directly compute the expectations in $f_S(x_S)$.
- For the marginal expectation, we can use the same approach as for partial dependency:

$$\hat{f}_{S}(x_{S}) = \frac{1}{n} \sum_{i=1}^{n} f(x_{S}, x_{Ci}),$$

where (x_{C1}, \ldots, x_{Cn}) are the *n* instantiations of x_C in a dataset \mathcal{D} .

- For consistency, we'll also define $\hat{f}_{\emptyset} = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$.
- For conditional expectation, this estimation is much more challenging.
 - In general, seems to require training 2^d regression models.
 - But we'll give one approximation in the next module on SHAP.

Shapley values for prediction function

- Suppose we have an estimate $\hat{f}_S(x_S)$ for each $S \subset \{1, \dots, d\}$.
- Then we can define the set function for our "game" on $\{1, \ldots, d\}$ as

$$\begin{aligned} v(S) &:= \hat{f}_S(x_S) \\ v(\emptyset) &:= 0. \end{aligned}$$

• Frequently it's defined as

$$\begin{aligned} v(S) &:= \hat{f}_S(x_S) - \hat{f}_{\emptyset} \\ v(\emptyset) &:= 0. \end{aligned}$$

- That way, Shapley values indicate how each feature
 - pulls the prediction away from the mean / "no information" prediction.

Estimating Shapley values for prediction function

• Let's return to the permutation formulation of Shapley value:

$$\phi_i(\mathbf{v}) = \frac{1}{d!} \sum_R \left[\mathbf{v}(P_i^R \cup \{i\}) - \mathbf{v}(P_i^R) \right].$$

- Let's take $v(S) = \mathbb{E}[f(x_S, X_C)].$
- The idea is do a Monte Carlo estimate of both the sum over R
 - as well as the expectation in v(S)
 - at the same time.
- We'll randomly sample a permutation R.
- Then we'll randomly sample an X_C
 - (which depends on *R* and *i* to determine the relevant features).
- Plugging this together, we'll get an unbiased estimate $\phi_i(v)$.
- The more samples, the better the estimate.

Approximate Shapley value, Monte Carlo approach (I)

• Given:

- point x,
- feature index j,
- prediction function f(x),
- dataset ${\mathcal D}$ with a sample of X's,
- $\bullet\,$ Draw a random instance Z from ${\mathcal D}\,$
- Draw a random permutation R of $\{1, \ldots, d\}$.

This presentation is based on [Mol19, Sec 5.9]

Approximate Shapley value, Monte Carlo approach (II)

• Order the features of x and z by R:

$$x_R = (x_{(1)}, \dots, x_{(j)}, \dots, x_{(d)})$$

 $Z_R = (Z_{(1)}, \dots, Z_{(j)}, \dots, Z_{(d)})$

• Construct new instances:

With feature *j*:
$$X_{+j} = (x_{(1)}, ..., x_{(j)}, Z_{(j+1)}, ..., Z_{(d)})$$

Without feature *j*: $X_{-j} = (x_{(1)}, ..., x_{(j-1)}, Z_{(j)}, ..., Z_{(d)})$

• Then [ŠK14]

$$\mathbb{E}_{R,Z}\left[f(X_{+j}) - f(X_{-j})\right] = \phi_i(v)$$

 So we can get arbitrarily good estimates of φ_i(v) by averaging a large number of these unbiased estimates.

This presentation is based on [Mol19, Sec 5.9]

David S. Rosenberg (NYU: CDS)

References

• The most common citation for the proof of the Shapley value theorem is Shapley's paper [Sha53]. These slides provide a proof of the Shapley value theorem, and I think the first few sections of [MP08] are easier to read than Shapley's paper.

References I

[CJLL20] Hugh Chen, Joseph D. Janizek, Scott Lundberg, and Su-In Lee, *True to the model or true to the data?*, CoRR (2020).

[JMB19] Dominik Janzing, Lenon Minorics, and Patrick Blöbaum, *Feature relevance quantification in explainable ai: a causal problem*, CoRR (2019).

- [Kru87] William Kruskal, Relative importance by averaging over orderings, The American Statistician 41 (1987), no. 1, 6–10.
- [LC01] Stan Lipovetsky and Michael Conklin, *Analysis of regression in game theory approach*, Applied Stochastic Models in Business and Industry **17** (2001), no. 4, 319–330.
- [Mol19] Christoph Molnar, Interpretable machine learning, bookdown.org, 2019, https://christophm.github.io/interpretable-ml-book/.

[MP08] Stefano Moretti and Fioravante Patrone, *Transversality of the shapley value*, TOP 16 (2008), no. 1, 1–41.

- [Sha53] L. S. Shapley, 17. a value for n-person games, Contributions to the Theory of Games (AM-28), Volume II, ch. 17, pp. 307–318, Princeton University Press, 1953.
- [ŠK14] Erik Štrumbelj and Igor Kononenko, Explaining prediction models and individual predictions with feature contributions, Knowledge and Information Systems 41 (2014), no. 3, 647–665.
- [Wik20] Wikipedia contributors, Shapley value Wikipedia, the free encyclopedia, 2020, [https://en.wikipedia.org/wiki/Shapley_value; accessed 26-April-2021].