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The covariate shift problem
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Supervised learning framework

X: input space
Y: outcome space
A: action space
Prediction function f : X→A (takes input x ∈ X and produces action a ∈A)
Loss function ` :A×Y→ R (evaluates action a in the context of outcome y).
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Risk minimization

Let (X ,Y ) ∼ p(x ,y).
The risk of a prediction function f : X→A is R(f ) = E`(f (X ),Y ).

the expected loss of f on a new example (X ,Y ) ∼ p(x ,y)

Ideally we’d find the Bayes prediction function f ∗ ∈ argminf R(f ).
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Empirical risk minimization

Training data: Dn = ((X1,Y1), . . . ,(Xn,Yn))

drawn i.i.d. from p(x ,y).

Let F be a hypothesis space of functions mapping X→A

A function f̂ is an empirical risk minimizer over F if

f̂ ∈ argmin
f∈F

1
n

n∑
i=1

`(f (Xi ),Yi ).

We’re estimating an expectation w.r.t. p(x ,y) using the sample Dn.
Most machine learning methods can be written in this form.
What if Dn is drawn from another distribution q(x ,y) rather than p(x ,y)?
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Covariate shift

Goal: Find f minimizing risk R(f ) = E`(f (X ),Y ) where

(X ,Y ) ∼ p(x ,y) = p(x)p(y | x).

We’ll refer to p(x ,y) as the test or target distribution (following [CMM10]).
Training data: Dn = ((X1,Y1), . . . ,(Xn,Yn)) is i.i.d. from

q(x ,y) = q(x)p(y | x).

We’ll refer to q(x ,y) as the training distribution.
Covariate shift is when

the covariate distribution is different in training and test (p(x) 6= q(x)), but
the conditional distribution p(y | x) is the same in both cases.
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Covariate shift: the issue

Under covariate shift,

E(Xi ,Yi)∼q(x ,y)

[
1
n

n∑
i=1

`(f (Xi ),Yi )

]
6= E(X ,Y )∼p(x ,y)`(f (X ),Y ).

The empirical risk is a biased estimator for risk.
Naive empirical risk minimization is optimizing the wrong thing.
Can we get an unbiased estimate of risk using Dn ∼ q(x ,y)?
Importance weighting is one approach to this problem.
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Importance-weighted ERM
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Change of measure and importance sampling

(Precise formulation in the “importance-sampling” slide notes.)

Theorem (Change of measure)

Suppose that p(x)> 0 =⇒ q(x)> 0 for all x ∈ X. Then for any f : X→ R,

EX∼p(x)f (X ) = EX∼q(x)

[
f (X )

p(X )

q(X )

]
.

If we have a sample X1, . . . ,Xn ∼ q(x), then a Monte Carlo estimate of the RHS

µ̂is =
1
n

n∑
i=1

f (Xi )
p(Xi )

q(Xi )

is called an importance sampling estimator for EX∼p(x)f (X ).
The ratios p(Xi )/q(Xi ) are called the importance weights.
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Importance weighting for covariate shift

Dn = ((X1,Y1), . . . ,(Xn,Yn)) is i.i.d. from

q(x ,y) = q(x)p(y | x).

The importance-weighted empirical risk is

R̂iw(f ) =
1
n

n∑
i=1

p(Xi )p(Yi | Xi )

q(Xi )p(Yi | Xi )
`(f (Xi ),Yi )

=
1
n

n∑
i=1

p(Xi )

q(Xi )
`(f (Xi ),Yi ).

EDn∼q(x ,y)R̂iw(f ) = E(X ,Y )∼p(x ,y)`(f (X ),Y ) by the change of measure theorem.
So the importance-weighted empirical risk is unbiased for the target risk.
Importance weighted ERM is finding f ∈ F that minimizes R̂iw(f ).
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• Apologies for the confusing change between “importance sampling” and “importance weighting”.

• Importance sampling is the term used when we’re talking about Monte Carlo estimation of an
expectation [Owe13, Ch 9.1].

• In the context of making an empirical risk function that we will optimize over, it’s generally
referred to as “importance weighting” [CMM10, BDL09]. The term “importance weighted
empirical risk” is used in the book [SSK12, Ch 9.1]

• That said, one of the original papers on using importance sampling for covariate shift just says
“weighted least squares” and “weighted log-likelihood”, and refers to the underlying mathematical
idea as the “importance sampling identity” [Shi00].

• So the terminology varies a bit in the literature.



Potential variance issues

Since the summands are independent, we have

Var
(
R̂iw(f )

)
= Var

(
1
n

n∑
i=1

p(Xi )

q(Xi )
`(f (Xi ),Yi )

)

=
1
n

Var
(
p(X )

q(X )
`(f (X ),Y )

)
If q(x) is much smaller than p(x) in certain regions,

the importance weight can get very large,
variance can blow up.
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Variance reduction for importance sampling

Can we sacrifice some bias to reduce variance?
Importance weight clipping: 1

n

∑n
i=1min

(
M, p(Xi)

q(Yi)

)
`(f (Xi ),Yi )

for hyperparameter M > 0.

Shomodaira’s exponentiation: 1
n

∑n
i=1

(
p(Xi)
q(Xi)

)γ
`(f (Xi ),Yi )

where the “flattening” hyperparameter γ ∈ [0,1] [Shi00].

Self-normalization: ∑n
i=1

p(Xi)
q(Xi)

`(f (Xi ),Yi )∑n
i=1

p(Xi)
q(Xi)

.

Also useful when you only know p(x) and/or q(x) up to a scale factor.
Self-normalization hopefully improves the variance of the risk estimate, but note that it has
no effect on which f minimizes the expression.
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To elaborate on the last bullet a bit, sometimes we want an estimate of the risk so that we can find an f̂
that minimizes that estimate. Self-normalization has no effect on the minimizer, since the denominator
does not involve f . However, sometimes we actually want a good estimate of the risk of a function f . In
that case, a self-normalized estimator may have smaller variance than the original importance-weighted
empirical risk.
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Resources

The most commonly cited article for using importance weighting with empirical risk
minimization is [Shi00].
Some statistical learning theory style bounds for this setting is given in [CMM10].
There are plenty of resources on importance sampling more generally. Sections 9.1 and 9.2
in Art Owen’s book [Owe13] is a good starting place.
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