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Recap: policy gradient for contextual bandits
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[Online] Stochastic k-armed contextual bandit

Stochastic k-armed contextual bandit
1 Environment samples context and rewards vector jointly, iid, for each round:

(X ,R) ,(X1,R1) , . . . ,(XT ,RT ) ∈ X×Rk i.i.d. from P,

where Rt = (Rt(1), . . . ,Rt(k)) ∈ Rk .
2 For t = 1, . . . ,T ,

1 Our algorithm selects action At ∈A= {1, . . . ,k} based on Xt and history

Dt =
(
(X1,A1,R1(A1)) , . . . ,(Xt−1,At−1,Rt−1(At−1))

)
.

2 Our algorithm receives reward Rt(At).

We never observe Rt(a) for a 6= At .
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Contextual bandit policies

A contextual bandit policy at round t

gives a conditional distribution over the action At to be taken
conditioned on the history Dt and the current context Xt .

In this module, we consider policies parameterized by θ: πθ(a | x), for θ ∈ Rd .
We denote the θ used at round t by θt , which will depend on Dt .
At round t, action At ∈A= {1, . . . ,k} is chosen according to

P(At = a | Xt = x ,Dt) = πθt (a | x).
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Example: multinomial logistic regression policy

An example parameterized policy:

πθ(a | x) =
exp
(
θTφ(x ,a)

)∑k
a ′=1 exp(θ

Tφ(x ,a ′))
,

where φ(x ,a) : X×A→ Rd is a joint feature vector.
And θTφ(x ,a) can be replaced by a more general gθ : X×A→ R.
The differentiability w.r.t. θ is key to a policy gradient method.
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How to update the policy?

Objective function for policy gradient:

J(θ) := Eθ [R(A)] .

Idealized policy gradient is to iteratively update θ as:

θt+1← θt +η∇J(θt).

Policy gradient theorem from last module gives an unbiased estimate of ∇J(θt).
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Unbiased estimate for the gradient

Consider round t of SGD for optimizing J(θ).
We play At from πθt (a | Xt) and record (Xt ,At ,Rt(At)).
To update θt , we need an unbiased estimate of ∇J(θt).
Last time we showed that

Eθt
[Rt(At)∇θ logπθt (At | Xt)] =∇θJ(θt)

Suggests the following iterative update:

θt+1← θt +ηRt(At)∇θ logπθt (At | Xt).

This is the basic policy gradient method.
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Using a baseline
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Subtracting a baseline from reward

Our objective function is
J(θ) = Eθ [R(A)] .

Suppose we introduce a new reward vector R0 = R−b, for constant b ∈ R.
Then

Jb(θ) = Eθ(R0(A)) = Eθ (R(A))−b.

Obviously, J(θ) and Jb(θ) have the same maximizer θ∗.
And ∇θJ(θ) =∇θJb(θ).
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Policy gradient with a baseline

If we just plug in the shift to our gradient estimators, we get:

J(θ) : θt+1 ← θt +ηRt(At)∇θ logπθt (At | Xt)

Jb(θ) : θt+1 ← θt +η(Rt(At)−b)∇θ logπθt (At | Xt)

where b is called the baseline.
The updates are different, so we’ll get different optimization paths.
Is (Rt(At)−b)∇θ logπθt (At | Xt) still unbiased for ∇J(θ)?
We’ll show that it is, even when we allow a random baseline Bt = f (Dt ,Xt).
The hope is to find a Bt that reduces the variance of the gradient estimate,

getting us to a better policy, faster.
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You might remember from the module on policy gradient for bandits that eventually we multiply the
baseline by some function of the action At to get our control variate. If the control variate can depend
on At , why can’t the baseline Bt also depend on At , like Bt = f (Dt ,Xt ,At)? There’s nothing that
prohibits us from considering such a Bt as a baseline. However, we’d have to be able to compute the
expectation of the control variate and show that it’s zero, which won’t be the case for all such Bt .



The score has zero expectation

Let p(a;θ) be a parametric distribution on a finite set A.
The score function is defined as s(a,θ) =∇θ logp(a;θ).
Then EA∼p(a;θ) [s(A,θ)] = 0 for any θ.
Proof: (assuming differentiability as needed)

EA∼p(a;θ) [s(A,θ)] = EA∼p(a;θ) [∇θ logp(a;θ)]

= EA∼p(a;θ)

[
∇θp(a;θ)

p(a;θ)

]
=

∑
a∈A

p(a;θ)

[
∇θp(a;θ)

p(a;θ)

]
=

∑
a∈A
∇θp(a;θ)

= ∇θ

[∑
a∈A

p(a;θ)

]
=∇θ [1] = 0

David S. Rosenberg (NYU: CDS) DS-GA 3001: Tools and Techniques for ML November 3, 2021 12 / 32



Estimate with baseline is unbiased

Allow θt and the baseline Bt at round t to depend on Dt and Xt :

Bt = f (Dt ,Xt) for some function f , and let
θt = g(Dt) for some function g .

So

E [Bt∇θ logπθt (At | Xt)]

= E [E [Bt∇θ logπθt (At | Xt) | Dt ,Xt ]] inner expectation over At ∼ πθt (· | Xt)

= E [BtE [∇θ logπθt (At | Xt) | Dt ,Xt ]] taking out what is known
= E [Bt0] = 0.

Therefore (Rt(At)−Bt)∇θ logπθt (At | Xt) is an unbiased estimate of ∇J(θ).
for any choice of f and g above.
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• Let’s show E [∇θ logπθt (At | Xt) | Dt ,Xt ] = 0 very explicitly. First, the only thing random in the
expectation is At ∼ πθt (· | Xt). Note that θt is generally random, via its dependence on Dt , but
we’re conditioning on Dt , so θt is constant here.

• Previously, we showed EA∼p(a;θ) [s(A,θ)] = 0 for any θ, where s(a,θ) =∇θ logp(a;θ). We’ll try
to put things in these terms...

• Define p(a;θ,x) = πθ(a | x), which gives a distribution on A for every θ ∈Θ and x ∈ X. Define
the corresponding score function as s(a,θ;x) =∇θ logp(a;θ,x). Then we know
EA∼p(a;θ,x) [s(A,θ;x)] = 0 for every θ and x , which we apply in the last step below. Let

r(d ,x) := E [∇θ logπθt (At | Xt) | Dt = d ,Xt = x ]

= E [∇θ logp(At ;θt ,x) | Dt = d ,Xt = x ]

= E [s(At ,θt ;x) | Dt = d ,Xt = x ]

= E [s(At ,g(d);x) | Dt = d ,Xt = x ] (only At is random)
= EAt∼p(a;g(d),x) [s(At ,g(d);x)]

= 0.

So r(Dt ,Xt) = E [∇θ logπθt (At | Xt) | Dt ,Xt ] = 0.



What to use for the baseline?

In round t, our unbiased estimate of ∇θJ(θt) is

(Rt(At)−Bt)∇θ logπθt (At | Xt).

We’re trying to “reduce the variance” of this estimate.

But what is the “variance”?

This expression is generally a vector in Rd , since θ ∈ Rd .

There is no scalar “variance” we can just try to minimize.

We’ll revisit this shortly...
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Basic approach to the baseline

The easiest thing to use for a baseline is

Bt =
1

t−1

t−1∑
i=1

Ri (Ai ).

Think Bt as a value estimate for policy πθt (a | x): Bt ≈ Eθt
[Rt(At)].

We can think of the baseline as shifting the rewards, making some positive and some
negative.
In practice, it’s usually much better than Bt ≡ 0.
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Input-dependent baseline

What if rewards Rt are generally smaller for some inputs Xt than others?
We can try to choose Bt ≈ Eθt

[R(At) | Xt ].
Learn r̂t(x)≈ Eθt

[Rt(At) | Xt = x ] from history Dt .
Use Bt = r̂t(Xt) as a baseline for round t.
We can learn r̂t(x) in an online manner, at the same time as we learn our policy.

e.g. in t’th round take a gradient step to reduce (Rt(At)− r̂t(Xt))
2.

This is an approach suggested in Sutton’s book [SB18, Sec 13.4].

David S. Rosenberg (NYU: CDS) DS-GA 3001: Tools and Techniques for ML November 3, 2021 16 / 32



• If you’re concerned that we’re trying to estimate Eθt [R(At) | Xt ] with only a single action At

drawn from θt ... well that’s a reasonable concern!

• Remember, we don’t need a perfect estimate of Eθt [R(At) | Xt ] — this is just to reduce the
variance and doesn’t affect the bias.

• In estimating Eθt [R(At) | Xt ], there are a couple of bias/variance tradeoffs in play. If we use all
the historical rewards, then our estimate will be biased, since only the last of those rewards is
actually drawn from θt . We can importance-weight to get an unbiased objective function, at the
cost of increased variance. We can also use a shorter history, where presumably policies from
more recent rounds are more similar to θt . Thus will also increase the variance but should
decrease the bias.



“Optimal” baseline
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“Optimal” baseline

Our gradient estimator is (Rt(At)−Bt)∇θ logπθt (At | Xt).
This a vector, so it’s not clear what it means to “minimize the variance.”
This random vector has a covariance matrix.
Let’s allow a different baseline Bt(α) for each entry of the gradient estimate.

(We did this for the multiarmed bandit in the previous module.)

Now we can attempt to minimize the variance for each entry separately.
This ignores off-diagonal entries of the covariance matrix.
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The entry variance

Define
G j
t = [∇θ logπθt (At | Xt)]j .

That is, G j
t is the j ’th entry of the score at round t.

Let’s consider the variance of the jth entry of our estimator with baseline b:

Vj := Var
(
[(Rt(At)−b)∇θ logπθt (At | Xt)]j

)
= Var

(
(Rt(At)−b)G j

t

)
= E

[
(Rt(At)−b)2

(
G j
t

)2
]
−
[
E(Rt(At)−b)G j

t

]2
= E(Rt(At)−b)2

(
G j
t

)2
−
[
E
[
Rt(At)G

j
t

]]2
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“Optimal” baselines

Differentiating Vj w.r.t. b:

Vj = E(Rt(At)−b)2
(
G j
t

)2
−
[
E
[
Rt(At)G

j
t

]]2
dVj

db
=

d

db

(
E
[
Rt(At)

2
(
G j
t

)2
]
+b2E

(
G j
t

)2
−2bERt(At)

(
G j
t

)2
)

= 2bE
(
G j
t

)2
−2ERt(At)

(
G j
t

)2

Solving for b in dVj

db = 0:

bjt :=

E
[
Rt(At)

(
G j
t

)2
]

E
[(

G j
t

)2
]
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“Optimal baselines”

So estimate for the j ’th entry should ideally use baseline bjt .
We can try to estimate the expectations from the logs:

E
[
Rt(At)

(
G j
t

)2
]
≈ 1

t−1

t−1∑
i=1

Ri (Ai )
(
G j
i

)2

E
[(

G j
t

)2
]
≈ 1

t−1

t−1∑
i=1

(
G j
i

)2
.
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• This derivation is based on Berkeley’s CS 285: Lecture 5, Slide 19, but their slide is quite vague
on specifics. They don’t seem to acknowledge that the gradient is a vector or that they’ll need a
different baseline for each entry. They also don’t indicate how to estimate the expectations.
Their interpretation of the resulting bjt in that slide is that it’s “just expected reward, but
weighted by gradient magnitudes!”. More references are given on the resources slide at the end
of this deck.

• If you’re after an “optimal” scalar baseline, you could try minimizing the trace of the covariance
matrix or ‖(Rt(At)−Bt)∇θ logπθt (At | Xt)‖22.

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf#page=19


“Optimal baselines” putting it together

Let θjt denote the j ’th entry of θt .
Update step at round t with these baselines is

θ
j
t+1← θ

j
t +η

(
Rt(At)−B j

t

)
[∇θ logπθt (At | Xt)]j ,

where

B j
t =

[
1

t−1

t−1∑
i=1

Ri (Ai )
(
G j
i

)2
]
/

1
t−1

t−1∑
i=1

(
G j
i

)2

G j
i = [∇θ logπθt (Ai | Xi )]j
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Actor-Critic methods
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Recall the policy gradient derivation

Recall the following formulation of the value function:

Eθ [R(A)] = EX

[
EA|X∼θ

[
ER|X [R(A) | A,X ] | X

]]
= EX

[
k∑

a=1

πθ (a | X )ER|X [R(A) | A= a,X ]

]

So

∇θEθ [R(A)] = EX

[
k∑

a=1

∇θ [πθ (a | X )]ER|X [R(A) | A= a,X ]

]

In PG, we use a “clever trick” to get an unbiased estimate of ∇Eθ [R(A)] from
(Xt ,At ,Rt(At)).
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Plug-in a value estimate

We have

∇θEθ [R(A)] = EX

[
k∑

a=1

∇θ [πθ (a | X )]ER|X [R(A) | A= a,X ]

]

Suppose we had r̂(x ,a)≈ E [R(A) | A= a,X = x ].
Then we get

∇θEθ [R(A)] ≈ EX

[
k∑

a=1

∇θ [πθ (a | X )] r̂(X ,a)

]

≈
k∑

a=1

∇θ [πθ (a | Xt)] r̂(Xt ,a)

The last step is a one-sample Monte Carlo estimate for EX .
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Online update of value estimator

Parametrize value estimator: r̂w (x ,a).
We’ll fit w by SGD on square loss:

∇w (r̂w (X ,A)−R(A))2 = 2(r̂w (X ,A)−R(A))∇w r̂w (X ,A).

This is the step direction, and we can absorb the 2 into the step size multiplier.
So value estimator update is

wt+1← wt −ηw (r̂w (X ,A)−R(A))∇w r̂w (X ,A)

Setting the step size can be done with the usual approaches.
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Actor-critic method

Definition (Actor-critic method, [SB18, p. 321])

Methods that learn approximations to both policy and value functions are often called
actor-critic methods, where actor is a reference to the learned policy, and critic is a reference
to the learned value function.

Initialize θ1 and w1 (learning rates ηθ and ηw ).
For each round t:

Observe Xt , choose action At ∼ πθt (a | Xt), receive Rt(At).

[Update actor] θt+1← θt +ηθ

[∑k
a=1∇θ [πθ (a | Xt)] r̂wt (Xt ,a)

]
[Update critic]wt+1← wt −ηw (r̂w (Xt ,At)−Rt(At))∇w r̂w (Xt ,At)

A slow direct method: we’re slowly adjusting our policy towards larger [estimated] value.
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Compare to policy gradient

The estimate of ∇θE [R(A)] in policy gradient is

(Rt(At)−Bt)∇θ logπθt (At | Xt).

It’s unbiased, but it has variance coming from Rt , At , and Xt .
The actor-critic estimate of ∇θE [R(A)] is

k∑
a=1

∇θ [πθ (a | Xt)] r̂(Xt ,a).

Variance comes from Xt and from r̂ , but the variance of r̂ decreases as we get more data.
The actor-critic estimate is biased by r̂ , in general, but we expect it to have less variance.
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Resources

In this module and the previous module, we present approaches to the online contextual
bandit problem. The policy gradient and actor-critic methods are usually presented in the
more general setting of reinforcement learning. The standard textbook reference is [SB18,
Ch 13] and [Wil92] is the original paper for “REINFORCE”, which is policy gradient in the
reinforcement learning setting.
In [GBB04] they approach the “optimal baseline” problem in a more general setting, but
they define optimality in terms of the trace of the covariance matrix of the gradient
estimate. This ignores correlations between components, as we do here. The same
approach is taken in [WRD+18, Appendix A].
One can find something similar to our “optimal” baseline approach (with a different
baseline for each component of the gradient estimate) in [PS08, Sec 3.2], though they’re
in the full reinforcement learning setting.
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