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1 General setup

A k-armed stochastic bandit is described by a probability distribution over a re-
ward vector R = (R(1), . . . , R(k)) ∈ Rk. For notational simplicity, we will
assume that the distribution of R comes from a parametric family of distributions
p(r | q) with parameter q ∈ Q. We’ll write q∗ for the true, but unknown, param-
eter corresponding to the distribution of R. We’ll write Eq for expectations taken
with respect to p(r | q). The expected reward for action a under p(r | q) will be
of great interest to us, so let us define

µa(q) = Eq [R(a)] ,

If we knew the true parameter value q∗, then the optimal action would always be

a∗ = argmax
a

µa(q∗) = argmax
a

Eq∗ [R(a)] .

The reward vectors R,R1, R2, . . . , Rt are generated i.i.d., though we only ob-
serve one entry of each reward vector per round. At the beginning of round t,
we’ve collected some partial reward observations, which we’ll write as

Dt = ((A1, R1(A1)) , . . . , (At−1, Rt−1(At−1))) .

We can use Dt to help us decide how to choose the action At in round t.

2 Going Bayesian

Thompson sampling is a Bayesian approach to choosing the action in every round.
When we go Bayesian, we change all unknown parameters into random elements.
In our context, the unknown reward parameter q∗ ∈ Q is replaced by the random
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element Q ∈ Q, with some prior distribution that we choose. We’ll denote the
prior by p(q). At this point, the full rewards distribution is given by

Q ∼ p(q)

Ri | Q ∼ p(ri | Q) ∀i,

whereR1, R2, . . . are conditionally independent givenQ. At this point, there is no
more “statistics” to do in the usual frequentist sense: there are no parameters to
estimate. Everything is just probability theory from now on, where the main oper-
ation will be to find the conditional distributions and/or expectations of unknown
random variables given the observed data Dt. These are referred to as “poste-
rior distributions” or “posterior means”, since they represent our beliefs after (or
“posterior” to) seeing the data.

We wish we could choose actions as

a = argmax
a

µa(Q) = argmax
a

E [R(a) | Q] ,

but we don’t observe Q, so we can’t do this. However, at time t we have some
information about Q that we can glean from the data Dt, and we can use that
to update our expected rewards. A purely exploitative action choice would be to
select the action for which the posterior mean reward is the largest:

a = argmax
a

E [R(a) | Dt] .

While we could implement this strategy for action selection, it’s probably not
making a good tradeoff between exploration and exploitation.

3 Thompson sampling

As noted above, ideally we’d choose action a for which a = argmaxa µa(Q).
Since we don’t observe Q, we cannot compute µa(Q). However, with a distri-
bution on Q, we can compute the probability that a = argmaxa µa(Q), for each
a.

The key idea in Thompson sampling is to select action awith probability pa :=
P (a = argmaxa µa(Q) | Dt), where pa is the probability thatR(a) has the largest
expectation under the posterior distribution p(q | Dt). Ties in the argmax can be
resolved arbitrarily, but consistently (e.g. assign a different number to each action
and resolve ties by going with the action with the smallest number).
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In general, actually calculating pa may be difficult or intractable. Perhaps we
could estimate the pa’s using Monte Carlo. However, it turns out that we can
get a sample from exactly the right distribution, without ever computing the pa’s
directly. We’ll call this the “Thompson sampling trick”:

1. Let Qt ∼ p(q | Dt) be a draw from the posterior distribution on Q.

2. Choose action to be At = argmaxa µa(Qt).

Now note that

P (At = a) = P
(
a = argmax

a
µa(Qt)

)
= P

(
a = argmax

a
µa(Q) | Dt

)
= pa,

which is exactly the distribution we wanted for At.
There are a few important things to recognize about Thompson sampling at

this point. First, you should see that Thompson sampling is making a particu-
lar tradeoff between exploration and exploitation. Second, note that Thompson
sampling is just a heuristic for making this tradeoff. While it does enjoy some op-
timality properties (see [LS20, Ch 36], and references therein), it’s by no means
the only reasonable thing to do in the Bayesian setting. 3) The choice of prior can
be important for Thompson sampling: if the prior indicates that a particular action
has reward that is much lower than it actually is, the corresponding action may
never get played.
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