
Tools and Techniques in Machine Learning
Homework 1: Missing data and inverse propensity weighting

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. LATEX, LYX, or Jupyter), though if you need to you may scan
handwritten work. For submission, you can also export your Jupyter notebook and merge that
PDF with your PDF for the written solutions into one file. Don’t forget to complete the
Jupyter notebook as well, for the programming part of this assignment.

1 Estimators for missing at random (MAR)
All questions below pertain to the missing at random (MAR) setting. Let’s review the MAR setup:
(X,R, Y ) , (X1, R1, Y1) , . . . , (Xn, Rn, Yn) are i.i.d. with covariate X ∈ X , response indicator R ∈
{0, 1}, and response Y ∈ R. Under MAR, we assume that R ⊥⊥ Y | X, and the response probability
is given by P (R = 1 | X = x) = π(x) ∈ (0, 1], where π(x) is the propensity score function. The
Yi’s corresponding to Ri = 0 are unobserved. The missing data problem is to estimate EY without
using the unobserved Yi’s, which is equivalent to using only (X1, R1, R1Y1) , . . . , (Xn, Rn, RnYn).

1.1 Total inverse propensity weight for observations has expectation n

Let Wi =
1

π(Xi)
be the inverse propensity weight for Yi.

1. Show that

E

[
n∑
i=1

WiRi

]
= n.

1.2 Complete case estimator is not consistent for MAR setting.
1. The complete case mean is defined as µ̂cc =

∑n
i=1RiYi/

∑n
i=1Ri. Show that under the MAR

assumption,

µ̂cc
P→ E [π(X)µ(X)]

E [π(X)]
,

where µ(x) = E [Y |X = x]. Assume1 that E |RY | < ∞ and E |R| < ∞. [Hint: The weak
law of large numbers (WLLN) states that if Y, Y1, . . . , Yn are i.i.d. with E |Y | < ∞, then

1The first first inequality is true if Y is bounded, which is reasonable in all our applications, and the second
inequality is clearly true since R ∈ {0, 1}.
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1
n

∑n
i=1 Yi

P→ EY . Apply the WLLN on the numerator and denominator separately, and then

apply Slutsky’s Theorem, which states that if Xn
P→ a and Yn

P→ b for constants a and b 6= 0,
then Xn

Yn

P→ a
b .]

2. Recall the SeaVan1 distribution from lecture (which is based on Example 1 in [SV18]):

X ∼ Unif ({0, 1, 2})
Y | X = x ∼ N (x, 1)

R | X = x ∼ expit(4− 4x),

where expit(x) = 1/ (1 + e−x). What does the complete case mean converge to for the Sea-
Van1 distribution [with at least 2 decimal places accuracy]? What is EY ?. The large gap
between the two is why we need to develop more sophisticated estimators to handle response
bias.

1.3 IPW estimator is not equivariant
Suppose D represents the dataset (X1, R1, R1Y1), . . . , (Xn, Rn, RnYn). For any a ∈ R, we’ll write
D− a for the dataset (X1, R1, R1 (Y1 − a)), . . . , (Xn, Rn, Rn (Yn − a)), which is the same as D, but
with each Y value shifted by a. We say that an estimator µ̂(D) is equivariant if µ̂(D−a) = µ̂(D)−a
for any D. In other words, subtracting a from all responses Yi just shifts the estimate by the same
amount a. (This definition is based on [LC98, Ch 3].)

1. Show that the self-normalized IPW estimator µ̂sn_ipw is equivariant. Explain why this implies
the complete case estimator µ̂cc is also equivariant.

2. Show that µ̂ipw(D− a) = µ̂ipw(D)− a
n

∑n
i=1

Ri

π(Xi)
and demonstrate that µ̂ipw is generally not

equivariant (though it is if π(x) ≡ 1).

3. Consider the estimator µ̂ipw,a(D) := µ̂ipw(D − a) + a. Show that µ̂ipw,a(D) is an unbiased
estimator of EY . [Hint: We already know that µ̂ipw(D) is an unbiased estimator of EY .]
Remark: By varying a, we can get a whole collection of unbiased estimators of EY . Some
will be better than others. We’ll revisit this setup in our next homework, where we’ll view
µ̂ipw,a(D) as a control variate adjustment of µ̂ipw, with the hope that a judicious choice of a
will lead to an estimator with reduced variance.
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