
Tools and Techniques for Machine Learning
Homework 2: Regression imputation, covariate shift, and

control variates

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. LATEX, LYX, or Jupyter), though if you need to you may scan
handwritten work. For submission, you can also export your Jupyter notebook and merge that
PDF with your PDF for the written solutions into one file. Don’t forget to complete the
Jupyter notebook as well, for the programming part of this assignment.

General hint on Adam’s Law
A couple times in this assignment we’ll need a variant on the basic Adam’s Law. Adam’s Law is
that E [E [Y | X]] = EY . The variant we’ll need is that Adam’s Law still holds when everything
is conditioned on a particular event. For example, E [E [Y | X,Z > a] | Z > a] = E [Y | Z > a].
We could see this by defining (X ′, Y ′) to have joint distribution that’s equal to the conditional
distribution of (X,Y ) | Z > a. Then

E [E [Y | X,Z > a] | Z > a]

= E [E [Y ′ | X ′]] = E [Y ′] = E [Y | Z > a] .

Another approach would be to define the random variable W = 1 [Z > a]. Then

E [E [Y | X,W ] |W ] = E [Y |W ] ,

by the generalized form of Adam’s Law. This implies that

E [E [Y | X,W = 1] |W = 1] = E [Y |W = 1] ,

1 Complete case mean is unbiased for MCAR (when it’s de-
fined)

Let Ri ∈ {0, 1} be the response indicator, Yi ∈ R the response. Consider the MCAR setting,
in which Ri ⊥⊥ Yi, and suppose (R, Y ), (R1, Y1), . . . , (Rn, Yn) are i.i.d. We observe data D =
((R1, R1Y1) , . . . , (Rn, RnYn)). The complete case estimator is defined as

µ̂cc = µ̂cc(D) =
∑n
i=1RiYi∑n
i=1Ri

.
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Note that if R1 = · · · = Rn = 0, then µ̂cc = 0
0 , which is undefined. Since µ̂cc is undefined with

nonzero probability, it doesn’t have an expectation or bias. In this problem, we consider whether
µ̂cc is unbiased after ruling out the case where it’s undefined.

1. Show that E [µ̂cc |
∑n
i=1Ri > 0] = EY . (Hint: Show that E [µ̂cc | R1, . . . , Rn,

∑n
i=1Ri > 0] =

EY .)

2 Regression imputation with E [Y | X = x]

Consider the MAR setting. Let f̂(x) be a regression function fit to the complete cases. Then the
regression imputation estimator for EY that we defined in class is given by

µ̂f̂ :=
1

n

n∑
i=1

[
RiYi + (1−Ri) f̂(Xi)

]
.

There is an alternative form of regression imputation where we apply f̂(x) to all the Xi’s, not just
the incomplete cases. This estimator is given by

µ̂f̂-full :=
1

n

n∑
i=1

f̂(Xi).

In this problem, we will verify that if we use E [Y | X = x] for our regression imputation, then both
of these regression imputation estimators are unbiased. This will give us some hope that, under
the appropriate technical conditions, if our model is well-specified, then each method of regression
imputation is consistent.

1. If f(x) = E [Y | X = x] ,show that E [µ̂f-full] = EY .

2. If f(x) = E [Y | X = x] ,show that E [µ̂f ] = EY . (Hint: See the slide on “Adam’s Law / Law
of iterated expectation” for inspiration, and you’ll also need to use the MAR assumption that
Yi ⊥⊥ Ri | Xi.)

3. If we expand out the two forms of the imputation estimator for a particular set of observed
data, we might get something like

µ̂f̂ =
1

n

(
Y1 + Y2 + f̂(X3) + Y4 + f̂(X5) + · · ·+ Yn

)
µ̂f̂-full =

1

n

(
f̂(X1) + f̂(X2) + f̂(X3) + f̂(X4) + f̂(X5) + · · ·+ f̂(Xn)

)
.

Written in this way, it’s easy to see that µ̂f̂-full and µ̂f̂ differ only in how they handle the
complete cases. We generally do not expect to have f̂(Xi) = Yi for all the compete cases
– that would indicate overfitting of our imputation function. Nevertheless, you might be
surprised to learn that µ̂f̂ = µ̂f̂-full in some common scenarios. Show that µ̂f̂-full = µ̂f̂ if we
fit the regression function f̂(x) to the complete cases using a linear model with intercept:

f̂ = argmin
{f :f(x)=a+wT x}

n∑
i=1

Ri(f(Xi)− Yi)2.
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3 A family of simple AIPW estimators
(Continuing the “IPW estimator is not equivariant” problem (1.3) in Homework #1.)

Suppose D represents the dataset (X1, R1, R1Y1), . . . , (Xn, Rn, RnYn) from a MAR setting. For
any a ∈ R, we’ll write D− a for the dataset (X1, R1, R1 (Y1 − a)), . . . , (Xn, Rn, Rn (Yn − a)), which
is the same as D, but with each Y value shifted by a. Recall the following estimators:

µ̂ipw = µ̂ipw(D) :=
1

n

n∑
i=1

RiYi
π(Xi)

µ̂ipw,a = µ̂ipw,a(D) := µ̂ipw(D − a) + a,

for any a ∈ R. In the last homework, we showed that

µ̂ipw(D − a) = µ̂ipw(D)−
a

n

n∑
i=1

Ri
π(Xi)

and that Eµ̂ipw,a(D) = EY .

1. We can view µ̂ipw,a as an augmented IPW (AIPW) estimator -- that is, as a control-variate
adjusted IPW estimator. With this view, what is the control variate and what is its expecta-
tion?

2. Given what we learned about control variates, how would you choose a ∈ R? (There are many
reasonable answers to this question, and I don’t believe there is a single best answer without
additional assumptions. That said, the section on “Optimal scaling to improve variance” in
the control variates module may be a source of some ideas.)

4 Election forecasting
Suppose we want to forecast the outcome of an election with two candidates. We have a budget to
call n people and ask who they’ll vote for. Each individual i is described by the following random
variables:

Xi ∈ X covariates describing individual i
Ti ∈ {0, 1} indicator for whether i will vote in the election ("turnout indicator")
Ri ∈ {0, 1} indicator for whether i will respond to a survey question if called
Yi ∈ {0, 1} indicator for which candidate an individual will vote for, if they vote

We’ll assume the existence of an “eligible voter generating distribution1”, and we’ll refer to it as
P . To carry out the survey, n individuals are sampled from P . For individuals who respond (i.e.
for whom R = 1), we will assume they reveal their true value of Y . We’ll write the full data
corresponding to this scenario as

(X,R, Y, T ) , (X1, R1, Y1, T1) , . . . , (Xn, Rn, Yn, Tn) ,

1In reality, there is a fixed set of potential voters. We’re taking the “eligible voter generating distribution” approach
to align more with the framework of our class. For large elections, the list of all potential voters is so much larger
than the size of the survey sample that this is a very reasonable approximation.
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sampled i.i.d. from P . However, since we only observe Y when R = 1, and we don’t observe T at
all, we’ll write the observed data as

(X,R,RY ) , (X1, R1, R1Y1) , . . . , (Xn, Rn, RnYn) .

We’ll make the following assumptions:

1. R, Y , and T are mutually independent given X. (In particular, this implies Y ⊥⊥ R | X and
Y ⊥⊥ T | X.)

2. We have access to a function πt(x) = P (T = 1 | X = x) that gives the “turnout probability”,
i.e. the probability that an individual will go vote, given their covariates2.

3. We have access to a function πr(x) = P (R = 1 | X = x) that gives the “response probability.”
This can function be estimated using the observed data using, for example, logistic regression.
But we’ll also assume that this part of the problem has already been solved and we know πr(x).

4. Every voter has at least some chance of responding to a survey. To put this in mathematical
terms: πt(x) > 0 =⇒ πr(x) > 0 ∀x ∈ X .

To forecast the election, we want to estimate P (Y = 1 | T = 1), i.e. the rate of voting for candidate 1
among individuals who actually go vote. In this problem, we’ll use a variant of regression imputation
that accounts for the covariate shift between the survey respondent distribution and the voter
distribution.

4.1 Fitting the regression
If we fit a model to the survey responses (i.e. the complete cases, i.e. the (Xi, Yi) pairs corresponding
to Ri = 1) in the usual way (say empirical risk minimization over some space of functions), we’ll
end up with a function f̂(x) that has low risk with respect to the distribution p(x, y | R = 1). In
other words, f̂(x) will perform well for survey responders, but what we really need is for f̂(x) to
perform well for voters, i.e. to have low risk w.r.t. the distribution p(x, y | T = 1).

1. If we’re fitting f̂(x) to data from p(x, y | R = 1) (without importance weighting), then we
expect f̂(x) ≈ E [Y | X = x,R = 1]. And if we could fit f̂(x) to data from p(x, y | T = 1)

then we would have f̂(x) ≈ E [Y | X = x, T = 1]. Naturally, you think that we’ll want to
try importance weighting to use data from p(x, y | R = 1) to estimate E [Y | X = x, T = 1],
which is what we’d get with data from p(x, y | T = 1). But wait! A colleague reminds you
that we’ve assumed Y ⊥⊥ T | X and Y ⊥⊥ R | X, which implies E [Y | X = x,R = 1] =
E [Y | X = x, T = 1] = E [Y | X = x]. And so, your colleague claims that importance weight-
ing doesn’t make a difference: we’re estimating E [Y | X = x] no matter which data we’re
fitting on. Describe a circumstance when this claim is reasonable and a circumstance when
it is not reasonable. (Hint: model misspecification)

2. Give an appropriate importance-weighted empirical risk estimate for f(x) in terms of a loss
function ` (f(X), Y ) and the observed data described above. We’ll only use it for learning f̂ ,
so don’t worry about scale factors.

2There are organizations and companies that produce this type of thing. It’s not a straightforward statistics or
machine learning problem, since it’s not clear there are any high quality labels to fit a model to. But we’ll assume
that somebody else has already solved this problem for us.
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4.2 Using our regression to forecast the election
The goal of this section is come up with an estimator for P (Y = 1 | T = 1). As noted in the
introduction, this will be our forecast of the election outcome.

1. Let f(x) = P (Y = 1 | X = x, T = 1) = E [Y | X = x, T = 1]. Show that

P (Y = 1 | T = 1) =
E [πt(X)f(X)]

E [πt(X)]
.

You can follow your own path, or use the steps in the subproblems below.

(a) Show that P(Y = 1 | T = 1) = E [f(X) | T = 1].

(b) Show that E [Tf(X)] = P (T = 1)E [f(X) | T = 1]. (Hint Remember that T ∈ {0, 1}.)
(c) Use the previous two results to show that P(Y = 1 | T = 1) = E [πt(X)f(X)] /P (T = 1).

(Hint: πt(X) = E [T | X].)

(d) Conclude the proof of this section by showing that P (T = 1) = E [πt(X)].

2. Propose an estimator for P (Y = 1 | T = 1) that uses an estimated regression function f̂(x)
(such as the one developed in Section 4.1) as a plug-in estimate for f(x), together with πt(x),
πr(x), and a new large sample3 X1, . . . , XN of covariates from P . Your estimator should

converge to
E[πt(X)f̂(X)]

E[πt(X)] as N →∞, though proving this is optional.

3In the election context, getting samples of just covariates X is generally cheap compared to getting samples of
(X,Y ) pairs.
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