
Tools and Techniques for Machine Learning
Homework 5

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. LATEX, LYX, or Jupyter), though if you need to you may scan
handwritten work. For submission, you can also export your Jupyter notebook and merge that
PDF with your PDF for the written solutions into one file. Don’t forget to complete the
Jupyter notebook as well, for the programming part of this assignment.

1 Calibration error
We the defined calibration error of f : X → [0, 1] is as

CE(f) =
(
E
[
(f(X)− P[Y = 1 | f(X)])

2
])1/2

and we defined the integrated squared error as

ISE(f) =
(
E
[
(f(X)− P[Y = 1 | X])

2
])1/2

.

We claimed that without any knowledge or assumption about P[Y = 1 | X], such as it being in
some smooth class of functions, it can be impossible to get a good estimate of ISE(f). The essence
of the issue is that we need to have data from all possible values of X to estimate P [Y = 1 | X],
and this is a problem if X is a continuous variable. In fact, we’ll have the same problem estimating
CE(f) if f(X) take continuous values (or takes uncountably many different values).

1. Show that if f : X → [0, 1] is an injective function (i.e. x 6= x′ =⇒ f(x) 6= f(x′) for
any x, x′ ∈ X ), then CE(f) = ISE(f). [Hint: Let g(x) = P [Y = 1 | f(X) = f(x)]and let
h(x) := P [Y = 1 | X = x] and show that g(x) = h(x) for all x ∈ X .] [Discussion: When
f is injective, we can say that f(x) maintains all the information in x. The implication of
this question is that if we want to be able to estimate CE(f), we’re going to need to make
some assumptions about f . The assumption that is typically made is that f(x) takes on only
finitely many different values. If this isn’t the case, we can approximate f by “binning”, as
discussed in lecture, then estimate the CE for the binned f .]

2 Plug-in estimator of calibration error
Suppose we want to estimate the calibration error of f : X → [0, 1], but f(x) takes too many
different values to estimate P [Y = 1 | f(X) = f(x)] for each. We decide to approximate f with a
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“binned version” fB(x) that takes only finitely many values, as follows: Let B be a partition of [0, 1]
into disjoint sets (i.e. “bins”) I1, . . . , IB , and define

fB(x) = E[f(X) | f(X) ∈ Ib] where f(x) ∈ Ib.

Without knowledge of the marginal distribution of X, we can’t compute fB(x). However, we’ll
assume we have a labeled sample (X1, Y1), . . . , (Xn, Yn), and we’ll use the natural estimate

f̂B(x) := mean {f(Xi) | f(Xi) and f(x) are in the same bin} .

We’ll now define the “plug-in estimator” for the [squared] CE of fB as

ĈE2(fB) :=

B∑
b=1

p̂b(f̂B(xb)− µ̂b)
2,

where xb is any value for which f(xb) ∈ Ib, µ̂b = mean {Yi | f(Xi) ∈ Ib} and p̂b = nb/n, where nb
is the number of Xi’s for which f(Xi) ∈ Ib.

1. Assuming the partition B is determined independently of the sample, give an expression for
CE2

∞(fB), the limit of ĈE2(fB) as n→∞. [Hint: You’ll want to define φb := P (f(X) ∈ Ib),
the probability that a prediction is in bin b. You can also use the expression E [Y | f(X) ∈ Ib]
in your answer.] (Just provide the expression – you don’t have to prove it. But if you feel like
being rigorous, the proof is a straightforward application of the weak law of large numbers,
Slutsky’s theorem, and the continuous mapping theorem.)

2. Show that CE2
∞(fB) = [CE(fB)]

2. Combined with our previous problem, this will imply that
ĈE(fB) is a consistent estimator of the calibration error of fB.

3. [Optional – no credit]Above, we assumed that the binning was determined independently
of our sample. Now suppose we use the same sample to determine the bins B as we use to
compute ĈE(fB). Show that if the f(Xi) are distinct for all i = 1, . . . , n and if we use quantile
binning with n bins, then ĈE(fB) becomes the empirical Brier score of f (i.e. mean squared
error). [This is bad if our goal is to estimate CE(f), because the Brier score is quite a different
thing from calibration error, as we’ve discussed.]
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